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Abstract

Motivated by various new applications of computational
symmetry in computer vision and in an effort to advance
machine perception of symmetry in the wild, we orga-
nize the third international symmetry detection challenge
at ICCV 2017, after the CVPR 2011/2013 symmetry de-
tection competitions. Our goal is to gauge the progress in
computational symmetry with continuous benchmarking of
both new algorithms and datasets, as well as more polished
validation methodology. Different from previous years, this
time we expand our training/testing data sets to include 3D
data, and establish the most comprehensive and largest an-
notated datasets for symmetry detection to date; we also ex-
pand the types of symmetries to include densely-distributed
and medial-axis-like symmetries; furthermore, we establish
a challenge-and-paper dual track mechanism where both
algorithms and articles on symmetry-related research are
solicited. In this report, we provide a detailed summary
of our evaluation methodology for each type of symmetry
detection algorithm validated. We demonstrate and ana-
lyze quantified detection results in terms of precision-recall
curves and F-measures for all algorithms evaluated. We
also offer a short survey of the paper-track submissions ac-
cepted for our 2017 symmetry challenge.

1. Introduction

The real world is full of approximate symmetries ap-
pearing in varied modalities, forms and scales. From in-
sects to mammals, intelligent beings have illustrated effec-
tive recognition skills and smart behaviors in response to
symmetries in the wild [9, 15, 38, 48], while computer vi-
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sion algorithms under the general realm of computational
symmetry [24] are still lagging behind [13, 25].

Our Symmetry Detection in the Wild challenge, affil-
iated with the International Conference in Computer Vi-
sion (ICCV) 2017 in Venice, Italy, is the third in a se-
ries of symmetry detection competitions aimed at sustained
progress quantification in this important subfield of com-
puter vision. The first symmetry detection competition [51],
funded through a US NSF workshop grant, was held in con-
junction with CVPR 2011, and offered the first publicly
available benchmark for symmetry detection algorithms
from images. The second symmetry competition, held dur-
ing CVPR 2013 [22, 52], started to build comprehensive
databases of real world images depicting reflection, rotation
and translation symmetries respectively. In addition, a set
of standardized evaluation metrics and automatic evaluation
algorithms were established, solidifying the computational
foundation for validating symmetry detection algorithms.

A historic overview of symmetry detection methods can
be found in [25, 32]. There has been much recent work
in symmetry detection since the last symmetry competition
in 2013 [22], including new deterministic methods [2, 46,
49], deep-learning methods [14, 42], and other learning-
based methods [45]. New applications include Symme-
try reCAPTCHA [13], 3D reconstruction [8, 12, 43], im-
age segmentation [4, 19], and rectification and photo edit-
ing [27, 37]. Many of these algorithms are featured in our
challenges as baseline algorithms. Levinshtein et al. [18]
detected straight, ribbon-like local symmetries from real
images in a multiscale framework, while Lee et al. [17]
extended the framework to detect curved and tapered lo-
cal symmetries. Pritts et al. [37] detect reflection, rota-
tion and translation symmetry using SIFT and MSER fea-
tures. The symmetries are found through non-linear opti-
mization and RANSAC. Wang et al. [49] use local affine in-
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variant edge correspondences to make their algorithm more
resilient to perspective distortion contours. Teo et al. [45]
detect curved-reflection symmetry using structured random
forests and segment the region around the curved reflection.
Sawada and Pizlo [39] exploit mirror symmetry in a 2-D
camera image for 3-D shape recovery.

Motivated by various new applications of computational
symmetry in computer vision, our third challenge expands
our training/testing data sets to include 3D data, establish-
ing the most comprehensive and largest annotated datasets
for symmetry detection to date. We expand the types of
symmetries to cover reflection, rotation, translation [25] and
medial-axis-like symmetries in 2D and 3D synthetic and
real image data, respectively. We also distinguish symme-
try annotations between discrete, binary pixel labels and
densely-distributed, continuous firing fields reflecting a gra-
dation in degrees of symmetry perception. We have further
refined our evaluation method to include F-measures in all
standardized precision-recall curves for comparison.

In terms of the symmetry challenge organization, we
have established a challenge-and-paper dual track mech-
anism where both algorithms and articles on symmetry-
related research are solicited. For the challenge track, we
have quantitatively evaluated 11 challenge-track submis-
sions against 13 baseline algorithms. In paper track, we
have accepted five paper-track submissions after an exten-
sive review process. Detailed information, datasets and re-
sults of this symmetry challenge can be found on the work-
shop website1.

2. Symmetry Challenge Track
We have divided our evaluation of the datasets

in the symmetry challenge track into sparse versus
dense/continuous labels, as well as 2D versus 3D symme-
tries.

2.1. General Evaluation Methods

For all challenge track evaluations, we use the standard
precision-recall and F-score evaluation metrics [14, 22, 29,
47]. Precision measures the number of true positives: this
is the number of detected medial points that are actually
labeled as positives in the ground-truth:

P =
true positives

true positives + false positives
. (1)

Recall measures the number of ground-truth positives that
are successfully recovered by the algorithm:

R =
true positives

true positives + false negatives
. (2)

Intuitively, precision is a measure of the accuracy of each
detection, while recall measures detection completeness.

1https://sites.google.com/view/symcomp17/

These two measures give us a quantitative means of eval-
uating each algorithm. To gain further insight into the dif-
ferences between the algorithms, we can evaluate precision
and recall by altering threshold values in the evaluation or
prediction confidences to create a plot of a PR-curve that
illustrates the trade-off between precision and recall.

One can summarize the performance of an algorithm
(and select the optimal threshold) using the harmonic mean
of precision and recall, which is called the F-measure or
F-score:

F =
2 · P ·R
P +R

. (3)

F-measure offers a convenient and justified single-value
score for system performance comparison.

2.2. 2D Symmetry - Sparse Evaluation

The 2D sparse evaluated symmetry competition includes
challenges on the detection of reflection and translation
symmetry. The total number of images and symmetries for
each task is shown in Table 1.

2D Challenge
Sparse Type # Images # Symmetries

Reflection single 100/100 100/100
multiple 100/100 384/371

Translation frieze 50/49 79/85

Table 1. The total number of images and symmetries within each
2D challenge in the training/testing sets.

2.2.1 Reflection and Translation Datasets

We have expanded and added new data sets beyond pre-
vious symmetry competitions [22]. The images are col-
lected from the Internet and are annotated by symmetry re-
searchers. For reflection symmetry, we divide the analysis
into images containing either a single symmetry or multiple
reflection symmetries. For translation, we tested the state-
of-the-art algorithm(s) for 1D translation (frieze) symmetry.

The reflection symmetry annotations are line segments
defined by two endpoints (Figure 1). Each translation sym-
metry annotation is a grid of points connected to create a
lattice of quadrilaterals (Figure 2). For baselines, reflection
uses Loy and Eklundh [26] and Atadjanov and Lee [3], and
translation uses Wu et al. [54]. The evaluation metrics for
each of these are similar to the previous symmetry compe-
tition [22].

Reflection Evaluation Metrics For the evaluation of re-
flection axis detection, we measure the angle difference be-
tween the detected and ground-truth axes and the distance
from the center to the ground truth line segment. We use
the same threshold values t1 (angle difference) and t2 (dis-
tance) used in [22]. Multiple detections for one ground truth
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Figure 1. Example annotations of the 2D Reflection dataset. Blue
lines are reflection symmetry axes.

Figure 2. Example annotations of the 1D translation (frieze) sym-
metry dataset.

axis are counted as one true positive detection, but none of
them is counted as a false positive. We vary the confidence
of the detections in order to create a precision-recall curve
for each algorithm.

Translation Evaluation Metric We use the same
distance-minimizing cost-function to align the detected and
ground truth lattices as [35]. A detected quadrilateral tile is
correct if it is matched with a ground truth lattice tile and the
ratio of the matched tile areas is between 40% and 200%.
We calculate the tile-success-ratio (TSR) [22] for each de-
tected lattice. Similar to [22], we calculate true positives as
images where a lattice is detected with a TSR > τ , where
τ is a threshold we vary from [0,1]. False positives are im-
ages where the best detected lattice has TSR ≤ τ , and false
negatives are images where there was no lattice detected in
the image.

2.2.2 Sparse Evaluation Results

The results for the reflection symmetry challenge are shown
in Figures 3 and 4. Baseline methods achieve the best re-
sults on both single (Atadjanov and Lee [3] F=0.52) and
multiple (Loy and Eklundh [26] F=0.30) reflection sym-
metry detections with respective highest F-measures. Loy
and Eklundh [26] has shown robust performance on various
datasets, including our previous competition. Atadjanov
and Lee is one of the state-of-the-art methods reported in the
literature. Elawady [11] shows a higher recall rate than oth-
ers on the single symmetry dataset and is the top-performing

Figure 3. PR curve on 2D Single Reflection Symmetry Dataset.
The algorithms are Michaelsen and Arens [30], Elawady et
al. [11], Guerrini et al. [16], Cicconet et al. [7], Loy and Eklundh
[26] (baseline), and Atadjanov and Lee [3] (baseline).

Figure 4. PR curve on 2D Multiple Reflection Symmetry
Dataset. The algorithms are Michaelsen and Arens [30],
Elawady et al. [11], Loy and Eklundh [26] (baseline), and Atad-
janov and Lee [3] (baseline).

method among all challenge submissions on both 2D reflec-
tion symmetry detection datasets.

For 1D translation symmetry, the baseline outperformed
the submission of Michaelsen and Arens [30] (Figure 5).
These results indicate much room for improvement for the
detection of frieze patterns in natural images.

2.3. 2D Symmetry - Dense Evaluation

For dense evaluation the annotation is a binary map and
the algorithm output is a confidence map, thresholded at
multiple values to create the PR curve, with both of the
maps have the same size as the input image (Figure 6. The
evaluation is conducted per pixel rather than per reflection
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Michaelsen and Arens: F=0.19

Wu et al.: F=0.20

Figure 5. PR curve on 1D Translation (Frieze) Symmetry
Dataset. The algorithms tested are the challenger, Michaelsen and
Arens [30], and the baseline Wu et al. [54].

Original
Image

GT Map
Overlay GT Map Confidence

Map Overlay

Figure 6. Examples of the original image, dense annotations map
(both overlaid and by itself), and an algorithm’s confidence map
overlaid on the image. The ground truth is evaluated by comparing
each pixel from the annotation and each pixel from the algorithm
output. The top row image is from the Sym-COCO dataset and
the algorithm is from Funk and Liu [14]. The bottom row image
is from the BMAX500 dataset and the algorithm is from Tsogkas
and Kokkinos [47].

symmetry or medial axis basis. An example of a dense (per
pixel) labeling is shown in Figure 7 (thickened for visibil-
ity), Figure 8 (with yellow lines), and in Figure 9 right.

2.3.1 Sym-COCO

The Sym-COCO task challenges algorithms to detect hu-
man perceived symmetries in images from the MS-COCO
dataset [20] and the ground truths are collected via Ama-
zon Mechanical Turk. The details on the collection and
the creation of the ground truth labels are described in
Funk & Liu [13, 14]. The dataset contains 250 train-
ing and 240/211 testing images for reflection/rotation (the
same testing set as [14]) detained in Table 2. The cur-
rent state-of-the-art baseline algorithm is the deep convo-
lutional neural network from Funk & Liu [14] (Sym-VGG
and Sym-Res). We also compare against Loy and Ek-

Figure 7. Example annotations of reflection (lines) and rotation
(circles) from the Sym-COCO dataset.

lundh’s algorithm [26] (LE), Tsogkas and Kokkinos’s algo-
rithm [47] (MIL), the Structured Random Forest method of
Teo et al. [45] (SRF), the Deep Skeleton method of Shen et
al. [41, 42] (LMSDS,FSDS), and the challenge submission
from Michaelsen and Arens [30].

This challenge and dataset are unique because they are
based on human perception rather than the 2D symmetry
contained within the image data. This goes beyond the
mathematical definition of symmetry because the human
perception of symmetry is invariant to out-of-plane rotation
and incomplete symmetries. Some example images with la-
bels are shown in Figure 7.

2.3.2 Medial Axis Detection

For the task of medial axis detection we use two datasets
recently introduced in the community. Since manually an-
notating medial axis/skeleton annotations in natural im-
ages with high precision can be cumbersome and time-
consuming, we followed a practical approach that has been
adopted in previous works [40, 41, 42, 47]. Specifically,
we apply a standard binary skeletonization technique [44]
on the available segmentation masks to extract ground-truth
medial axes that will be used for training and evaluation. In
this way, we obtain high-quality annotations for both loca-
tion and scale of each medial point.

Below we list dataset statistics in more detail and high-
light their differences.

SK-LARGE was introduced in [41], which consists of
1491 cropped images from MS-COCO [20] (746 train, 245
validation, 500 testing). The objects in SK-LARGE be-
long to a variety of categories, including humans, animals
(e.g., birds, dogs and giraffes), and man-made objects (e.g.,
planes and hydrants).

BMAX500 is the second dataset used for the Medial Axis
Detection challenge. It was introduced in [46] and is built
on the popular BSDS500 dataset [1, 28]. BMAX500 con-
tains 500 images that are split into 200 images for training,
100 images for validation, and 200 images for testing.

The original set of BSDS500 annotations contains seg-
mentations collected by 5-7 human annotators per image,
without any object class labels. As a result, there is no way



Figure 8. Images and ground-truth annotations (in yellow) from
the SKLARGE dataset. Only skeletons of foreground objects are
annotated.

Figure 9. Image (left), ground-truth segmentation (middle) and
ground-truth medial axis (right) from the BMAX500 dataset. In
BMAX500, we do not distinguish between foreground and back-
ground.

Dataset # Images
train/valid./test

fg/bg
distinction

# Symmetries
train/test

Sym-COCO [14] 250/–/240 – 1535/1469
BMAX500 [46] 200/100/200 no –
SKLARGE [41] 746/245/500 yes –

Table 2. The total number of images in the dense evaluation
dataset, if the datasets have foreground (fg) or background (bg)
distinction in the segmentations, and the number of symmetries.

to distinguish between foreground and background, which
makes BMAX500 an appropriate benchmark for evaluating
a more general, class-agnostic medial axis detection frame-
work. This is an important difference with respect to the
SK-LARGE dataset, which is particularly focused on ob-
ject skeletons.

2.3.3 Dense Evaluation Metrics

The algorithms examined in this part of the challenge out-
put a real-valued map of probabilities or “symmetry/medial
point strength” at each location in the image, rather than bi-
nary yes/no decisions. We turn this soft confidence map into
a binary result of detected reflection symmetry/medial axis,
by thresholding it at different values and plot the precision-
recall curves as described in Section 2.1.

Detection slack. Both the ground-truth and the detected
medial axes are thinned to single-pixel width in order to
standardize the evaluation procedure. Now, consider two
false positives returned by the tested algorithm, which are
1 pixel and 10 pixels away from a ground-truth positive. It
would be unreasonable to penalize both of these false de-
tections in the same way, since the first one is much closer
to a true reflection symmetry axis/medial point.
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MA: F=0.09

Sym-VGG: F=0.38

Sym-ResNet: F=0.41

LE: F=0.12

MIL: F=0.19

SRF: F=0.15
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Figure 10. PR curve for the Sym-COCO Reflection dataset for
the 240 images and all GT labels (solid line) and for the subset
of 111 reflection symmetry images with GT labels containing at
least 20 labelers (dashed line), and the maximum F-measure values
(dot on the line). The algorithms are the challenger Michaelsen
and Arens [30] (MA), Funk and Liu [14] (Sym-VGG and Sym-
Res - the baselines), Loy and Eklundh [26] (LE), Tsogkas and
Kokkinos [47] (MIL), Teo et al. [45] (SRF), and Shen et al. [42]
(FSDS).

We “forgive” such wrong yet reasonable detections by
introducing a detection slack: all detected points within d
pixels from a ground-truth positive are considered as true
positives. We typically set d as 1% of the image diago-
nal [29].

2.3.4 Dense Evaluation Results

The Sym-COCO reflection challenge results are shown in
Figure 10. The scores are the mean precision and recall,
calculated among the images. The new challenger algo-
rithm by Michaelsen and Arens [30] did not fair well in the
competition and was surpassed by other algorithms. The
algorithms which incorporate learning using additional im-
ages from outside this training set faired much better (all but
Loy and Eklundh [26] and Michaelsen and Arens [30]) and
the deep learning approaches (Funk & Liu [14] and Shen et
al. [42]) predictably did the best. Funk & Liu [14], the base-
line algorithm, took the top spot in the competition.

The results for medial axis detection are shown in Fig-
ures 11 and 12. The challenger algorithms beat the base-
line algorithms for both datasets. In general, we observe
that recent methods based on supervised deep learning out-
perform other learning-based and unsupervised, bottom-up
approaches [47, 46].

2.4. 3D Symmetry

This part of the symmetry detection challenge only con-
siders reflection symmetries of single 3D objects or within
larger 3D scenes given as polygonal meshes.
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Figure 11. PR curves on the BMAX500 dataset. The algo-
rithms are: MIL-color [47] (baseline), AMAT [46] (baseline), and
RSRN [21]. Human agreement on the dataset (extracted by com-
paring one human annotation to all the others) is also included.
The performance of methods that do not involve threshold selec-
tion is represented as a single dot, which corresponds to the opti-
mal F-score.
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Figure 12. PR curves on the SKLARGE dataset. The algo-
rithms are: MIL-color [47] (baseline), LMSDS [41] (baseline),
and SegSkel [23]. Dots correspond to the optimal F-score.

2.4.1 Datasets and Annotation

The 3D dataset is split according to the following three dif-
ferent properties:

• Synthetic vs. Real Data: The annotation of real data
is costly while large labeled synthetic datasets, which
are often required for learning-based methods, can be
easily obtained. Therefore, it is natural to select a
combination of the two. The synthetic data is a col-
lection of free, publicly available 3D models obtained
from Archive3D [50]. The real datasets are kinect
scans of real world scenes and are taken from the pub-
licly available datasets that accompany two papers by

Choi et al. [5, 6] as well as from the work of Speciale et
al. [43].

• Global vs. Local Symmetries: The difference be-
tween global and local symmetries is that the symme-
try property respectively holds either for the entire do-
main or only for a local region of the domain. In the
literature, local symmetries are sometimes also called
partial symmetries [31, 32].

• Training vs. Test Data: The test and training datasets
have similar properties and data statistics. Correspond-
ing ground truth data is made publicly available for
the training dataset. Furthermore, performance eval-
uations on the test dataset will be performed upon
request and subsequently published on the workshop
website [53].

Figure 13 depicts some example scenes from the 3D dataset.
The total number of scenes and symmetries for each task is
shown in Table 3.

3D Synthetic Data Annotation. The synthetic data for
global symmetries only contains single objects. Ground
truth symmetries were found by sampling a set of symmetry
planes and rejecting the ones for which the planar reflective
symmetry score [36] is below a threshold. These objects
are originally axis-aligned which may bias learning-based
methods. We therefore provide a dataset of over 1300 axis-
aligned objects and their annotations as well as their ran-
domly rotated counterparts. The synthetic data for local
symmetries is a collection of scenes composed of objects
from the global symmetry dataset. The scenes were gen-

synthetic data real data
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Figure 13. Overview of available scenes in the 3D symmetry
dataset which is split by synthetic vs. real data and local vs. global
symmetries, shown with ground truth symmetry annotations.



3D Challenge Type # Scenes # Symmetries

Global Reflection Synthetic 1354/441 1611/614
Real 20/20 21/22

Local Reflection Synthetic 200/200 1939/2239
Real 21/21 44/46

Table 3. The total number of scenes and symmetries within each
3D challenge in the training/testing sets.

erated with a script that places a desired number of sym-
metric objects with arbitrary translation, rotation and scale
on top of a table. The script is available on the challenge
website [53] and allows for the generation of an arbitrary
amount of training data. A precomputed training dataset
with 200 scenes is directly available for download.

3D Real Data Annotation. The real world data was an-
notated manually with the help of a 3D editor and model
viewer that directly overlays the semi-transparent geometry
of the reflected scene. In this way, one can instantly assess
the quality of the fit while adjusting the symmetry plane.

2.4.2 Evaluation Metrics

Similar to the 2D case, the 3D planar reflective symmetries
are evaluated according to the position and orientation of
the symmetry plane with respect to the ground truth. A cor-
rect detection (true positive) is credited if both the position
of the symmetry plane center and the orientation are suffi-
ciently close to the ground truth plane.

Let (c, n) denote a symmetry plane given by the center
point c ∈ R3 on the plane and the plane’s normal vector
n ∈ R3, and let (cGT, nGT) be the corresponding ground
truth symmetry. The symmetry is rejected if the angular dif-
ference between the symmetry normals is above a threshold
θ, i.e. if arccos(|n · nGT|) > θ. In practice, symmetries
are given by three points x0, x1, x2 ∈ R3 which span the
symmetry plane and also define a parallelogram that bounds
the symmetry. Center point and normal are then given by
c = 1

2 (x1 + x2), n = (x1 − x0)× (x2 − x0). A symmetry
is also rejected if the distance of the tested center c to the
ground truth plane restricted to the bounding parallelogram
is larger than a threshold: ‖c−ΠGT(c)‖2 > τ .

Precision-recall curves are generated by linearly varying
both thresholds within the intervals θ ∈ [0, 45◦] and τ ∈
[0, 2] ·min{x1 − x0, x1 − x0, x1GT − x0GT, x1GT − x0GT}.

2.4.3 Results

Ecins et al. [10] submitted results for the real and synthetic
test data set for local symmetries, which are shown in Fig-
ure 14 and Figure 15, respectively. The curve in Figure 14
is very short since there are not many variations due to the
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Ecins et al.: F=0.61

Figure 14. PR curve on the real local symmetry test dataset.
Results for Ecins et al. [10]. The dot corresponds to the optimal
F-score.
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Figure 15. PR curve on the synthetic local symmetry dataset.
Results for Ecins et al. [10]. The dot corresponds to the optimal
F-score.

small size of the test dataset. Generally, the method com-
putes symmetries with high accuracy for the ones it has de-
tected. Figure 16 presents the results by Cicconet et al. [7]
on the synthetic global test dataset.

3. Symmetry Paper Track
In the paper track of the workshop, full-length submis-

sions were each reviewed by two members of the Organiz-
ing and/or Advisory Committees. In all, five papers were
accepted for inclusion in the proceedings and presentation
at the workshop.

In “Wavelet-based Reflection Symmetry Detection via
Textural and Color Histograms” [11], Elawady et al. ad-
dress the problem of detecting global symmetries in an im-
age, in which extracted edge-based features are used to vote
for symmetry axes based on color and texture information
in the vicinity of the extracted edges.

In “SymmSLIC: Symmetry Aware Superpixel Segmen-
tation” [34], Nagar and Raman offer a new twist on the su-
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Figure 16. PR curve on the synthetic global symmetry test
dataset. Showing the results of Cicconet et al. [7]. The dot corre-
sponds to the optimal F-score.

perpixel segmentation problem. If a set of corresponding
pixels can be detected that exhibit approximate reflective
symmetry about an axis, these points can serve as seeds for
a SLIC-inspired superpixel segmentation algorithm where
superpixels that encompass these symmetric seeds are si-
multaneously grown such that they, too, are symmetric.

In “SymmMap: Estimation of 2-D Reflection Symmetry
Map with an Application” [33], Nagar and Raman compute
a symmetry map representation consisting of two compo-
nents: the first specifies, for each pixel, the location of its
symmetric counterpart, while the second provides a confi-
dence score for the mapping.

In “On Mirror Symmetry via Registration and the Op-
timal Symmetric Pairwise Assignment of Curves” [7], Cic-
conet et al. address the problem of detecting the plane of re-
flection symmetry in Rn by registering the points reflected
about an arbitrary symmetry plane, and then inferring the
optimal symmetry plane from the parameters of the trans-
formation mapping the original to the reflected point sets.

In “Hierarchical Grouping Using Gestalt Assessments”
[30], Michaelsen and Arens describe a framework for us-
ing various types of symmetry (e.g., reflection, Frieze rep-
etition, and rotational symmetry) to organize nonaccidental
arrangements (Gestalten) into hierarchies that take into ac-
count image location, scale, and orientation.

4. Conclusions
Our evaluation of 11 different symmetry challenge track

submissions against 13 baseline algorithms gives us a
glimpse of the state-of-the-art of symmetry detection algo-
rithms in computer vision. It is somewhat surprising that
among the six algorithms evaluated, Loy and Eklundh’s
algorithm of ECCV 2006 [26] remains competitive in de-
tecting reflection symmetries on 2D images, in particular

on detecting multiple reflection symmetries (F=0.30), while
for detecting a single reflection symmetry in an image the
baseline algorithm of Atadjanov and Lee [17] is the best
(F=0.52). On frieze pattern detection from images, the F-
scores of both baseline [54] and challenger [30] are rela-
tively low (F=0.19-0.20). Seven algorithms are evaluated
on the Sym-COCO dataset for reflection symmetry detec-
tion, for which the Funk and Liu [14] CNN baseline algo-
rithm trained with human labels stands out (F=0.38-0.41).
Moving on to medial-axis detection on real images, the
good news is that the challengers RSRN [21] (F=0.64) and
SegSkel [23] (F=0.73) beat the baseline algorithms as the
winner on the BMAX500 and SKLARGE datasets respec-
tively, yet they still score worse than humans (F=0.80).
The 3D symmetry detection algorithms [7, 10] evaluated
in this symmetry challenge demonstrated high promise on
synthetic and real data sets respectively. But larger dataset
and more algorithms are needed for a more comprehensive
validation and comparison in the future.

There seems to be a general trend of an ascending or-
der in symmetry detection performance of learning-based
algorithms, deep-learning methods, and human, which sug-
gests that we have much to learn from human perception.
Though progress has been made, detecting symmetry in the
wild has proven to be a real challenge facing the computer
vision community and, more generally, the artificial intelli-
gence community. We anticipate that future advancements
on mid-level machine perception will benefit from the out-
come (algorithms, labeled datasets) of our ICCV 2017 De-
tecting Symmetry in the Wild Challenge.
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