Subcortical brain structure segmentation using FCNNs

Stavros Tsogkas¹, Mahsa Shakeri^{2,3}, Enzo Ferrante¹, Sarah Lippe^{3,4}, Samuel Kadoury^{2,3}, Nikos Paragios¹, Iasonas Kokkinos¹

Diseases and their relation to subcortical structures

Alzheimer's: structure degeneration

Schizophrenia: volume abnormalities [Shenton M.E. et al., Psychiatry Res. 2002]

Tumors: avoid radiation on sensitive regions [Hoehn D. et al., Journal of Medical Cases, 2012]

3D Segmentation

Our results

Groundtruth

Why automatic segmentation?

No need for manual annotation (time consuming, need experts, limited reproducibility)

Non-invasive diagnosis and treatment

Segmentation using MRI

Goal

- Classify every pixel as one of L possible structures.
- Exploit context.
- Enforce volumetric homogeneity.

Fully convolutional neural networks (FCNNs) + Graphical models (MRFs)

Outline

Semantic segmentation of MRI slices

[1] Long et al., CVPR 2015

Our CNN architecture

• Compact architecture (~4GB GPU RAM).

MRF for volume homogeneity

Experiments

- Two datasets:
 - Internet Brain Segmentation Repository (IBSR).
 - Roland Epilepsy (RE).
- Train CNN on 2D slices from *axial* view.
- Data augmentation: ~100K training images.

Results (Dice coefficient)

Dice: 1 = perfect overlap with ground truth.

<u>Average Dice (IBSR)</u>

- Thalamus: 0.87
- Putamen: 0.83
- Caudate: 0.78
- Pallidum: 0.75

Comparison with other methods

Dice coefficient

	Freesurfer ¹	FSL ²	Ours
IBSR - Thalamus	0.86	0.85	0.87
IBSR - Caudate	0.82	0.68	0.78
IBSR - Putamen	0.81	0.81	0.83
IBSR - Pallidum	0.71	0.73	0.75
RE - Putamen	0.74	0.88	0.89
Running time (1 vol.)	~hours	~minutes	~1 minute

[1] Fischl et al., Neuron 2002.

[2] Patenaude et al., NeuroImage 2011.

The type of unaries matters

Dice coefficient (IBSR dataset)

- 1. Thalamus left
- 2. Caudate left
- 3. Putamen left
- 4. Pallidum left
- 5. Thalamus right
- 6. Caudate right
- 7. Putamen right
- 8. Pallidum right

The type of unaries matters

MRF removes spurious responses

CNN

CNN+MRF

Limitations and future directions

Small structures are challenging

Left hemisphere Right hemisphere

Does not work for sagittal view because of symmetry

3D CNNs

Summary

• <u>FCNNs + MRFs:</u>

- accurate, *dense* labelling using 2D image data.
- volumetric homogeneity
- Efficient segmentation of 3D volumes: (~1 min)
- No need for expensive GPUs (~4GB GPU RAM)

Code, CNN probability maps: https://github.com/tsogkas/brainseg

IBSR dataset: Hausdorff distance

CNN unaries

Random forest unaries

- 1. Thalamus left
- 2. Caudate left
- 3. Putamen left
- 4. Pallidum left
- 5. Thalamus right
- 6. Caudate right
- 7. Putamen right
- 8. Pallidum right

IBSR dataset: contour mean distance

CNN unaries

Random forest unaries

- 1. Thalamus left
- 2. Caudate left
- 3. Putamen left
- 4. Pallidum left
- 5. Thalamus right
- 6. Caudate right
- 7. Putamen right
- 8. Pallidum right

RE dataset: HD and CMD

Random forest unaries

